skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schreiber, Dominik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Distributed clause-sharing SAT solvers can solve challenging problems hundreds of times faster than sequential SAT solvers by sharing derived information among multiple sequential solvers. Unlike sequential solvers, however, distributed solvers have not been able to produce proofs of unsatisfiability in a scalable manner, which limits their use in critical applications. In this work, we present a method to produce unsatisfiability proofs for distributed SAT solvers by combining the partial proofs produced by each sequential solver into a single, linear proof. We first describe a simple sequential algorithm and then present a fully distributed algorithm for proof composition, which is substantially more scalable and general than prior works. Our empirical evaluation with over 1500 solver threads shows that our distributed approach allows proof composition and checking within around 3x its own (highly competitive) solving time. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026